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1 Introduction

In this course we shall extend notions of differential calculus from functions of one
variable to more general functions

f : Rn → Rm. (1.1)

In other words functions f = (f1, . . . , fm) with m components, all depending on n
variables x1, . . . , xn. In fact, we shall take it one step further and consider maps

f : X → Y

where X and Y are normed vector spaces over R. In this course we restrict attention to
the case where X and Y are finite dimensional, and so by a choice of bases in X and in
Y we reduce this more general looking case to (??). It is however often convenient to
have this invariant definition.

The questions we will be interested in studying include the following.

• If n = m, under what circumstances is f invertible?

• If n ≥ m, when does the equation f(x, y) = 0, with x ∈ Rn−m and y ∈ Rm,
implicitly determine y as a function of x ?

• Is the zero locus f−1(0) a smooth subset of Rn in a suitable sense, for example a
smooth surface in R3?

The first major new idea is to define the derivative at a point as a linear map, which
we can think of as giving a first-order approximation to the behaviour of the function
near that point. A key theme will be that, subject to suitable nondegeneracy assump-
tions, the derivative at a point will give qualitative information about the function on
a neighbourhood of the point. In particular, the Inverse Function Theorem will tell us
that invertibility of the derivative at a point (as a linear map) will actually guarantee
local invertibility of the function in a neighbourhood.

The results of this course are foundational for much of mathematics and the notion
of a smooth manifold is in particular central to mathematical physics and geometry. A
smooth submanifold in Rn is, intuitively, a generalisation to higher dimensions of the
notion of a smooth surface in R3. Among many other things we shall use our theorems
to obtain a criterion for when the locus defined by a system of nonlinear equations is
a manifold. Manifolds are the setting for much of higher-dimensional geometry and
mathematical physics and in fact the concepts of differential (and integral) calculus
that we study in this course can be developed on general manifolds. The Part B course
Geometry of Surfaces and the Part C course Differentiable Manifolds develop these ideas
further.
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2 Differentiation of functions of several
variables

2.1 Introduction

In this chapter we will extend the concept of differentiability of a function of one variable
to the case of a function of several variables. We first recall the definitions for a function
of one variable.

Differentiability of a function of one variable
Let I ⊆ R be an open interval. A function f : I ⊆ R→ R is differentiable at x ∈ I if

f ′(x) := lim
h→0

f(x+ h)− f(x)

h

exists. Equivalently we can say that f is differentiable in x ∈ I if there exists a linear
map∗ L : R→ R such that

lim
h→0

f(x+ h)− f(x)− Lh
h

= 0. (2.1)

In this case, L is given by L : h 7→ f ′(x) · h.
Another way of writing (??) is

f(x+ h)− f(x)− Lh = Rf (h) with Rf (h) = o(|h|), i.e. lim
h→0

Rf (h)

|h|
= 0. (2.2)

This definition is more suitable for the multivariable case, where h is now a vector, so it
does not make sense to divide by h.

Differentiability of a vector-valued function of one variable
Completely analogously we define the derivative of a vector-valued function of one

variable. More precisely, if f : I ⊆ R→ Rm,m > 1, with components f1, . . . , fm, we say
that f is differentiable at x ∈ I if

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists.

∗Here and in what follows, we will often write Lh instead of L(h) if L is a linear map.
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It is easily seen that f is differentiable at x ∈ I if and only if fi : I ⊆ R → R is
differentiable in x ∈ I for all i = 1, . . . ,m. Also, f is differentiable in x ∈ I if and only
if there exists a linear map L : R→ Rm such that

lim
h→0

f(x+ h)− f(x)− Lh
h

= 0.

How can we now generalize the concept of differentiability to functions of several
variables, say for a function f : Ω ⊆ R2 → R, f = f(x, y)? A natural idea is to freeze
one variable, say y, define g(x) = f(x, y) and check whether g is differentiable at x.
This will lead to the notion of partial derivatives and most of you have seen this already
in lectures in the first year, e.g. in Calculus. However, we will see that the concept of
partial derivatives alone is not completely satisfactory. For example we will see that the
existence of partial derivatives does not guarantee that the function itself is continuous
(as it is the case for a function of one variable).

The notion of the (total) derivative for functions of several variables will not have this
deficiency. It is based on a generalisation of the formulation in (??). In order to do that
we will need a suitable norm (length function) on Rn. You may have learned already,
e.g. in Topology, that all norms on Rn are equivalent, and hence properties of sets, such
as openness or boundedness, and of functions, such as continuity, do not depend on the
choice of the norm.

In the sequel we will always use the Euclidean norm on Rn and denote it by | · |. More
precisely, for x = (x1, . . . , xn) ∈ Rn we denote

|x| =
√
x2

1 + . . . x2
n .

You may check yourself that this defines a norm (and hence a metric). For the proof of
the triangle inequality you will need to use the Cauchy-Schwarz inequality.

We shall also use the matrix (Hilbert-Schmidt) norm

‖C‖ =

 n∑
i,j=1

C2
ij

 1
2

on the space of n× n real matrices. We have the following useful inequality:

|Ch| =
(∑

i

(∑
j

Cjihj

)2) 1
2 ≤

(∑
i

(∑
j

C2
ij

)(∑
j

h2
j

)) 1
2

= |h| ‖C‖.

We shall also occasionally use the fact that

‖AB‖ ≤ ‖A‖‖B‖.
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2.2 Partial derivatives

We are going to consider† functions f : Ω ⊆ Rn → Rm. Here and in what follows we
always assume that Ω is an open and connected subset of Rn (a domain).

We first consider a few examples of such functions.

Example 2.2.1. a) The function f : Rn → R given by

x 7→ |x| =

(
n∑
i=1

x2
i

) 1
2

.

b) The function g : R3 → R2 defined by

g : (x, y, z) 7→
(

x3 + y3 + z3 − 7
xy + yz + zx+ 2

)
.

c) The electric field in a vacuum induced by a point charge q in a point x0 ∈ R3 is
given by

f : R3 \ {x0} → R3 , f(x) = q
x− x0

|x− x0|3
.

d) f : C→ C, f(z) = ez has – with the usual identifications – the real representation
f : R2 → R2 given by

f(x, y) =

(
ex cos y

ex sin y

)
.

e) f : Rn2 → Rn2
where we identify Rn2

with Mn×n(R), the vector space of n × n
matrices, and define f by f : A 7→ A2.

We shall sometimes use the concepts of graphs and level sets. Let f : Ω ⊆ R2 → R be
a function. Then the graph of f , given by

Γf = {(x, y) ∈ Ω× R | y = f(x)},

is usually a surface in R3. Its level set at level c ∈ R is

Nf (c) = {x ∈ Ω | f(x) = c},

which is usually a curve in Ω.
The concepts of graphs and level sets generalise in an obvious way to functions f : Ω→

R defined on domains Ω in Rn and beyond.

†We will use the shorthand f : Ω ⊆ Rn → Rm’ to mean that “Ω is a domain in Rn and f : Ω→ Rm

is a function”.
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Definition 2.2.2. (Partial derivative) Let f : Ω ⊆ Rn → R. We say that the i-th
partial derivative of f in x ∈ Ω exists, if

∂f

∂xi
(x) = lim

t→0

f(x+ tei)− f(x)

t

exists, where ei is the i-th unit vector. In other words, the i-th partial derivative is the
derivative of g(t) = f(x+ tei) at t = 0.

Other common notations for the i-th partial derivative of f at x are

∂if(x), Dif(x), ∂xif(x), fxi(x) or f,i(x).

We will mostly use ∂if(x). If f : Ω ⊆ R2 → R we often write f = f(x, y) and denote the
partial derivatives by ∂xf and ∂yf respectively.

Example 2.2.3. a) Let f : Rn → R be given by f(x) = |x|. Then for x 6= 0 we have

1

t

(
|x+ tei| − |x|

)
=

1

t

|x+ tei|2 − |x|2

|x+ tei|+ |x|
=

1

t

2txi + t2

|x+ tei|+ |x|
=

2xi + t

|x+ tei|+ |x|
→ xi
|x|

as t → 0. Hence, for x 6= 0, the function f has partial derivatives, given by
∂if(x) = xi

|x| . Notice that no partial derivative of f exists at x = 0.

b) Let f(x) = g(r) with r(x) = |x| and differentiable g : [0,∞)→ R. Then, for x 6= 0,
by the Chain Rule from Prelims Analysis 2, we find

∂if(x) = g′(r)∂ir(x) = g′(r)
xi
|x|

=
g′(r)

r
xi .

The following example shows that, surprisingly, functions whose partial derivatives all
exist are in general not continuous.

Example 2.2.4. Let f : R2 → R

f(x, y) =


xy

(x2 + y2)2
for (x, y) 6= (0, 0),

0 for (x, y) = (0, 0).

• f has partial derivatives on R2 \ {(0, 0)} with

∂xf(x, y) =
y

(x2 + y2)2
− 4x2y

(x2 + y2)3

and a similar expression for ∂yf(x, y).

• f has partial derivatives at 0, since f is identically zero on the x and y axes.
Explicitly, for all t 6= 0 we have

f((0, 0) + t(1, 0))− f(0, 0)

t
=
f(t, 0)− f(0, 0)

t
=

0− 0

t
= 0

and thus ∂xf(0) = 0 ; similarly ∂yf(0) = 0.
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• But: f is not continuous at (x, y) = (0, 0). To see this, consider the behaviour of
the function on the line {(t, t) : t ∈ R}. On this line, f(t, t) = 1

4t2
which tends to

∞ as t→ 0.

This shows that existence of partial derivatives is not the correct notion of differen-
tiability in higher dimensions. We shall see later that the correct higher dimensional
version of differentiability, using the ideas concerning linear maps from the beginning of
this chapter, will imply continuity of the function. We shall also see that functions with
continuous partial derivatives are differentiable in this correct sense and hence are also
continuous. In our example above, the partial derivatives ∂if(x) are not continuous at
x = 0.

Before we define differentiability, we shall make some more remarks about partial
derivatives.

The partial derivative is a special case of the directional derivative which we will now
define.

Definition 2.2.5. (Directional derivative) Suppose that f : Ω ⊆ Rn → R and let
v ∈ Rn\{0}. If

∂vf(x) = lim
t→0

f(x+ tv)− f(x)

t

exists, we call it the directional derivative of f in direction v at the point x ∈ Ω.
Observe that if v is one of the unit coordinate vectors ei, then we recover the notion

of partial derivative.

Example 2.2.6. Let f : Rn → R be given by f(x) = |x| and let x, v ∈ Rn \ {0}. Then

∂vf(x) =
d

dt

∣∣∣
t=0
|x+ tv| = d

dt

∣∣∣
t=0

( n∑
i=1

|xi + tvi|2
) 1

2

=
1

2|x|

n∑
i=1

2xivi =
n∑
i=1

xi
|x|
vi =

〈 x
|x|
, v
〉
,

where 〈·, ·〉 denotes the usual scalar product in Rn. If v = ei we recover the formula
∂i|x| = xi

|x| from Example ??.

Definition 2.2.7. (Gradient) Let f : Ω ⊆ Rn → R and assume that all partial deriva-
tives exist at x ∈ Ω. We call the vector field ∇f(x) ∈ Rn given by

∇f(x) =

 ∂1f(x)
...

∂nf(x)


the gradient of f at x.

Note that the directional derivative is related to the gradient via the formula:

∂vf(x) = 〈∇f(x), v〉.
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Example 2.2.8. If f(x) = |x| and x 6= 0 then ∇f(x) =


x1
|x|
...
xn
|x|

 = x
|x|

and ∂vf(x) = 〈∇f(x), v〉.

Definition 2.2.9. (Partial derivatives for vector-valued functions) Consider a map
f : Ω ⊆ Rn → Rm. We say that the i-th partial derivative of f at x ∈ Ω exists, if
it exists for all components f1, . . . , fm. In that case we write

∂if(x) =

 ∂if1(x)
...

∂ifm(x)

 .

The following definition will prove useful when we study differentiable functions.

Definition 2.2.10. (Jacobian matrix) Suppose that f : Ω ⊆ Rn → Rm and that all
partial derivatives exist at x ∈ Ω. Then the (m× n)-matrix

Df(x) =

 ∂1f1(x) . . . ∂nf1(x)
...

. . .
...

∂1fm(x) . . . ∂nfm(x)


is called the Jacobian matrix of f in the point x.
If n = m we call Jf (x) = detDf(x) the Jacobian determinant or the functional deter-
minant of f at x.

We can write the Jacobian matrix in terms of the gradients of the components:

Df(x) =

 (∇f1(x))T

...
(∇fm(x))T

 ,

where the superscript T denotes transposition.

Note for future reference that the Jacobian matrix Df(x) can be consider as a linear
map from Rn to Rm: v 7→ Df(x)v.

2.3 Higher partial derivatives

Definition 2.3.1. (Partial derivatives of order k, Ck(Ω,Rn)) Suppose that we are given
a domain Ω ⊆ Rn.

a) Let f : Ω→ Rm. The partial derivatives of order k are inductively defined via

∂j1 . . . ∂jkf(x) = ∂j1(∂j2 . . . ∂jk)f(x) where j1, . . . , jk ∈ {1, . . . , n}.

Notice that j1, . . . , jk are not necessarily distinct, and that (a priori) their order is

important. A common notation is ∂kf(x)
∂j1 ...∂jk

or even ∂j1j2...jkf(x).
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b) Let Ck(Ω,Rm) be the set of continuous functions f : Ω→ Rm whose partial deriva-
tives exist up to order k for all x ∈ Ω and are continuous in Ω. If m = 1, we write
Ck(Ω). Given a domain Θ ⊂ Rm, we will sometimes write Ck(Ω,Θ) to be the set
of functions f ∈ Ck(Ω,Rm) with f(Ω) ⊆ Θ.

Proposition 2.3.2. (Exchangeability of partial derivatives, Theorem of Schwarz) Sup-
pose that f ∈ C2(Ω). Then we have for 1 ≤ i, j ≤ n and for any x ∈ Ω that

∂i∂jf(x) = ∂j∂if(x)

Proof. (Not examinable) Let ∂tjf(x) =
f(x+tej)−f(x)

t be the difference quotient of f in
xj . By definition

∂i∂jf(x) = lim
s→0

(lim
t→0

∂si ∂
t
if(x))

We need to show that both limits can be interchanged. By the Intermediate Value
Theorem we have for all functions g : Ω→ R, for which ∂ig(x) exists, that

∂si g(x) = ∂ig(x+ αsei) for some α ∈ (0, 1).

If we apply this for g = ∂tjf and g = ∂si f , we get

∂si ∂
t
jf(x) = ∂i∂

t
jf(x+ αsei) for some α ∈ (0, 1)

= ∂tj(∂if(x+ αsei))

= ∂j(∂if(x+ αsei + βtej)) for some β ∈ (0, 1)

Since ∂j∂if is continuous, it follows that

∂j∂if(x+ αsei + βtej)
s→0−−−→ ∂j∂if(x+ βtej)

t→0−−→ ∂j∂if(x).

Corollary 2.3.3. Suppose that f ∈ Ck(Ω). Then all partial derivatives up to order k
can be interchanged.

The following example shows that the condition in Proposition ?? that the second
partial derivatives must be continuous is indeed necessary.

Example 2.3.4. Let f : R2 → R be given by

f(x, y) =


xy
x2 − y2

x2 + y2
for (x, y) 6= (0, 0);

0 for (x, y) = (0, 0).

One can show that f ∈ C1(R2), but ∂x∂yf(0, 0) = 1 and ∂y∂xf(0, 0) = −1.
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2.4 Differentiability

We will now introduce the notion of the (total) derivative which is based on the idea
that the function can be approximated well near a point by a linear map.

Definition 2.4.1. (Differentiable map)

a) We say that a function f : Ω ⊆ Rn → Rm, is differentiable at x ∈ Ω if there exists
a linear map L : Rn → Rm such that

lim
h→0

f(x+ h)− f(x)− Lh
|h|

= 0

We call L the (total) derivative of f at x and denote it by df(x).

b) We say that f is differentiable in Ω, if f is differentiable at every x ∈ Ω.

Remark 2.4.2.

a) You might wonder if the total derivative df(x) as defined above is really well-
defined: check that if two linear maps L1, L2 : Rn → Rm exist satisfying the
condition for differentiability of f at x, then necessarily L1 = L2.

b) Alternatively we can say that f is differentiable at x ∈ Ω if there exists a linear
map L : Rn → Rm such that

f(x+ h)− f(x)− Lh = Rf (h) with Rf (h) = o(|h|)

c) f : Ω → Rm is differentiable at x ∈ Ω if and only if every component fi : Ω →
R, i = 1, . . . ,m, is differentiable at x ∈ Ω.

Intuitively, f(x) is the zero-order approximation to f(x + h), while f(x) + Lh is the
first order or linear approximation to f(x + h). The term Rf (h) tends to zero faster
than h and can be viewed as a remainder or error term for the linear approximation.
This kind of thinking is familiar from the theory of Taylor approximations.

By inspection of Definition ?? you will notice that we do not really have to confine
attention to functions between Rn and Rm. The definition makes perfect sense also for
functions between normed vector spaces. This is often useful and we highlight it with a
definition:

Definition 2.4.3. (Differentiable map between normed spaces) Let (X, ‖ · ‖X) and
(Y, ‖·‖Y ) be finite dimensional and normed vector spaces over R. Assume that f : Ω→ Y
is a map where Ω is an open subset of X.

A) We say that f is differentiable at x ∈ Ω if there exists a linear map L : X → Y
such that

lim
h→0

‖f(x+ h)− f(x)− Lh‖Y
‖h‖X

= 0.

We call L the (total) derivative of f at x and denote it by df(x).
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B) We say that f is differentiable in Ω (or simply differentiable when Ω is clear from
the context), if f is differentiable at every x ∈ Ω.

Since all norms on a finite dimensional vector space are equivalent it is not difficult
to check that the notion of differentiability is independent of the chosen norms. This is
different if we allowed X, Y to be infinite-dimensional, and is one of the reasons why we
do not consider that case here.

We shall now give some examples of computing the derivative. The strategy is always
the same–expand out f(x+ h)− f(x), and (provided f is differentiable at x) we are left
with the terms linear in h, which give the derivative, and terms of higher order which
are collected together to form the remainder term.

Example 2.4.4.

1. Let A = (aij) be a m×n matrix and let f : Rn → Rm be the linear map f : x 7→ Ax.
Now

f(x+ h)− f(x) = A(x+ h)−Ax
= Ax+Ah−Ax
= Ah

So in this case f(x + h) − f(x) is exactly given by the linear term Ah and the
remainder term Rf (h) is zero. So f is differentiable and the linear map L = df(x)
is given by df(x) : h 7→ Ah.

2. Let C = (cij) ∈Mn×n(R) be symmetric and let f : Rn → R be the quadratic form
corresponding to C, that is f(x) = xTCx = 〈x,Cx〉. Letting h ∈ Rn, we see:

f(x+ h)− f(x) = 〈x+ h,C(x+ h)〉 − 〈x,Cx〉
= 〈x,Cx〉+ 〈h,Cx〉+ 〈x,Ch〉+ 〈h,Ch〉 − 〈x,Cx〉
= 2 〈Cx, h〉+ 〈h,Ch〉

where we use the fact that 〈x,Ch〉 is a scalar so

〈x,Ch〉 = xTCh = (xTCh)T = hTCTx = hTCx = 〈h,Cx〉

as C is symmetric. Hence a candidate for df(x) is (2Cx)T , as 2(Cx)Th = 2 〈Cx, h〉.
Indeed, ∣∣∣∣f(x+ h)− f(x)− 2(Cx)Th

|h|

∣∣∣∣ =

∣∣∣∣〈h,Ch〉|h|

∣∣∣∣ ≤ |h||Ch||h|
≤ ‖C‖ |h| → 0 for h→ 0 ,

where ‖C‖ =
(∑n

i,j=1 c
2
ij

) 1
2
. Thus f is differentiable at every x ∈ Rn and df(x) =

(2Cx)T , that is df(x)h = (2Cx)Th = 〈2Cx, h〉.
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3. f : Mn×n(R)→Mn×n(R), f(A) = A2.
Let H ∈Mn×n(R). Then

f(A+H)− f(A) = (A+H)(A+H)−A2

= AH +HA+H2

The linear term AH +HA is a candidate for the derivative:

f(A+H)− f(A)− (AH +HA)

|H|
=
H2

|H|
→ 0 as H → 0.

Hence f is differentiable in every A ∈Mn×n(R) with df(A)H = AH +HA.

There is a nice general formula for the differential df(x) in terms of the Jacobian
matrix Df(x).

Proposition 2.4.5. If f : Ω ⊆ Rn → Rm is differentiable at x ∈ Ω, then f is continuous,
the partial derivatives ∂1f(x), . . . , ∂nf(x) exist and

df(x)h = Df(x)h

for all h ∈ Rn. That is, with h =
∑n

i=1 hiei we have df1(x)
...

dfm(x)

 =

 ∂1f1(x) . . . ∂nf1(x)
...

. . .
...

∂1fm(x) . . . ∂nfm(x)


 h1

...
hn

 .

In other words, the Jacobian matrix Df(x) is the representation of df(x) with respect to
the standard bases for Rn and Rm.

Proof. It suffices to prove the statement for m = 1. Continuity of f at x follows from

lim
h→0

(
f(x+ h)− f(x)

)
= lim

h→0

(
Lh−Rf (h)

)
= 0.

To show that the partial derivatives exist, choose h = tei. Then differentiability of f at
x implies ∣∣∣1

t

(
f(x+ tei)− f(x)

)
− Lei

∣∣∣→ 0 as t→ 0.

Hence ∂if(x) = Lei. Since h =
∑n

i=1 hiei we find Lh =
∑n

i=1 hiLei =
∑n

i=1 hi∂if(x).

Remark 2.4.6. a) Proposition ?? in particular implies that if f : Ω ⊆ Rn → R is
differentiable at x ∈ Ω, then

df(x)h =
n∑
i=1

∂if(x)hi = 〈∇f(x), h〉 .

This can also be seen as the definition of the gradient. The gradient of f is the
vector field ∇f such that Lh = 〈∇f, h〉 for all h ∈ Rn.
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b) It is important to realise that Proposition ?? just says that if f is differentiable,
then the derivative is given by the Jacobian matrix of partial derivatives. As we
have seen before in Example ??, existence of the Jacobian matrix is not sufficient
to guarantee differentiability.

2.5 A sufficient condition for differentiability

It is often not so easy to use the definition of differentiability to decide whether a function
is differentiable or not. The following result gives a useful criterion.

Proposition 2.5.1. (Continuous partial derivatives imply differentiability) Suppose
that the function f : Ω ⊆ Rn → Rm has continuous partial derivatives. Then f is
differentiable in Ω.

Proof. It suffices to consider the case m = 1. Let h ∈ Rn; a candidate for the derivative
is Lh =

∑n
k=1 ∂kf(x)hk.

Let x0 = x, xk = x +
∑k

j=1 hjej , such that xn = x + h. Then f(xk) − f(xk−1) =
f(xk−1 + hkek)− f(xk−1) and the Mean Value Theorem (for functions of one variable)
implies f(xk)− f(xk−1) = ∂kf(xk−1 + θkhkek)hk with θk ∈ [0, 1]. Hence

|f(x+ h)− f(x)− Lh|
|h|

=
1

|h|

∣∣∣∣∣
n∑
k=1

(f(xk)− f(xk−1))−
n∑
k=1

∂kf(x)hk

∣∣∣∣∣
=

1

|h|

∣∣∣∣∣
n∑
k=1

∂kf(xk−1 + θkhkek)hk −
n∑
k=1

∂kf(x)hk

∣∣∣∣∣
≤ |h|
|h|

(
n∑
k=1

(
∂kf(xk−1 + θkhkek)−

n∑
k=1

∂kf(x)
)2
) 1

2

→ 0 for h→ 0,

since ∂kf is continuous in x.

Corollary 2.5.2. If f has continuous partial derivatives, then f is continuous.

2.6 The Chain Rule

Proposition 2.6.1. (Chain Rule) Let Ω ⊆ Rn and V ⊆ Rm be open and connected
sets, let g : Ω → V and f : V → Rk. Suppose that g is differentiable at x ∈ Ω and f is
differentiable at y = g(x) ∈ V . Then the map f ◦ g : Ω→ Rk is differentiable at x and

d(f ◦ g)(x) = df(g(x))dg(x) .

In coordinates this reads

∂

∂xj
(fi ◦ g)(x) =

m∑
l=1

∂

∂yl
fi(g(x))

∂

∂xj
gl(x) , i = 1, . . . , k , j = 1, . . . , n .

13



Proof. We define A = dg(x) and B = df(g(x)). We need to show that d(f ◦g)(x) = BA.
Since g and h are differentiable, we have

g(x+ h) = g(x) +Ah+Rg(h) with h ∈ Rn, Rg(h) = o(|h|)

and
f(y + η) = f(y) +Bη +Rf (η) with η ∈ Rm, Rf (η) = o(|η|).

We choose now η = g(x+ h)− g(x) = Ah+Rg(h). Then

f(g(x+ h)) = f(g(x) + η) = f(g(x)) +Bη +Rf (η),

so
f(g(x+ h)) = f(g(x)) +B(Ah+Rg(h)) +Rf (Ah+Rg(h)) .

It remains to show g(h) = BRg(h) +Rf (Ah+Rg(h)) = o(|h|) To that aim notice that

|BRg(h)|
|h|

≤ |B||Rg(h)|
|h|

→ 0 for |h| → 0

and, for sufficiently small |h|,

|Ah+Rg(h)| ≤ |A||h|+ |Rg(h)| ≤ (|A|+ 1)|h|.

Hence
Rf (Ah+Rg(h))

|h|
→ 0 for |h| → 0

Corollary 2.6.2. (Derivative of the Inverse) Suppose that f : Rn → Rn is invertible
with inverse g : Rn → Rn. Suppose further that f is differentiable at x and that g is
differentiable at g = f(x).
Then the Chain Rule implies for g(f(x)) = x that

dg(f(x))df(x) = Id and hence dg(f(x)) = (df(x))−1 .

Example 2.6.3. (Polar coordinates in R2) Let f : R+ × (0, 2π) → R2 be given by
f(r, ϕ) = (r cosϕ, r sinϕ) =: (x, y). Let g be the inverse function to f . From

Df(r, ϕ) =

(
cosϕ −r sinϕ
sinϕ r cosϕ

)
we deduce that detDf(r, ϕ) = r > 0. Then

Dg(x, y) = Df(r, ϕ)−1 =

(
cosϕ sinϕ
−1
r sinϕ 1

r cosϕ

)
=

(
x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

)

14



Corollary 2.6.4. (The gradient is perpendicular to level sets) Let f : Ω ⊆ Rn → R be
differentiable and let γ be a regular curve parametrized by γ : (α, β)→ Ω, which lies in a
level set of f , that is, f(γ(t)) = c for all t ∈ (α, β). Then we have for all t ∈ (α, β) that

0 = df(γ(t))γ′(t) =
〈
∇f(γ(t)), γ′(t)

〉
Remark 2.6.5. The direction of∇f(x) is the direction of steepest ascent at x, (−∇f(x))
is the direction of steepest descent. Indeed, consider any v ∈ Rn with |v| = 1. Then

|df(x)v| = | 〈∇f(x), v〉 | ≤ |∇f(x)||v| = |∇f(x)|1 = |∇f(x)|

and equality holds if v = ∇f(x)
|∇f(x)| .

2.7 Mean Value Theorems

Our goal in this section is to use information about the derivative of a function to obtain
information about the function itself.

Remark 2.7.1. In the case n = 1 we know the following Mean Value Theorem for a
differentiable function f : f(x) − f(y) = f ′(ξ)(x − y) for some ξ ∈ (x, y). We cannot
generalize this, however, for vector-valued functions, since in general we get a different
ξ for every component. The Fundamental Theorem of Calculus does not have this
disadvantage: f(y) − f(x) =

∫ y
x f
′(ξ) dξ is also true for vector-valued functions, but of

course requires f ′ to be continuous.

We are now going to prove some versions of the Mean Value Theorem for functions of
several variables.

Proposition 2.7.2. Suppose that f : Ω ⊆ Rn → R is differentiable and let x, y ∈ Ω be
such that the line segment [x; y] = {tx+ (1− t)y | t ∈ [0, 1]} is also contained in Ω. Then
there exists ξ ∈ [x; y], such that

f(x)− f(y) = df(ξ)(x− y) = 〈∇f(ξ), x− y〉

Proof. Let γ(t) = tx + (1 − t)y, t ∈ [0, 1], and F (t) = f(γ(t)). Then f(x) = F (1) and
f(y) = F (0). The Chain Rule implies that f is differentiable and

d

dt
F (t) = df(γ(t))γ′(t) .

By the Mean Value Theorem for n = 1 there exists τ ∈ (0, 1), such that F (1)− F (0) =
F ′(τ). Hence

f(x)− f(y) = df(γ(τ))(x− y) = df(ξ)(x− y) with ξ = γ(τ) .

15



Corollary 2.7.3. Let Ω ⊆ Rn be path connected. If f : Ω → R satisfies df(x) = 0 for
all x ∈ Ω, then f is constant in Ω.

Proof. Connect two arbitrary points by a polygon and apply the Mean Value Theorem
to each part.

Proposition 2.7.4. Let f : Ω ⊆ Rn → Rm, f ∈ C1(Ω,Rm). Suppose that for x, y ∈ Ω
there exists a regular curve γ : [α, β]→ Ω which connects x and y, i.e γ(α) = y, γ(β) = x.
Then

f(x)− f(y) =

∫ β

α
df(γ(t))γ′(t) dt .

Proof. Use the Fundamental Theorem of Calculus and the Chain Rule for for F (t) =
f(γ(t)).

Remark 2.7.5. Another version: let x ∈ Ω, ξ ∈ Rn und ∀t ∈ [0, 1] : x+ tξ ∈ Ω. Then

f(x+ ξ)− f(x) =

∫ 1

0
df(x+ tξ)ξ dt .

Proposition 2.7.6. Let Ω ⊆ Rn be open and convex, i.e. for all points x, y ∈ Ω we
also have that the line segment [x; y] ⊂ Ω. Suppose that f ∈ C1(Ω,Rm) and

sup
x∈Ω
|Df(x)| ≤ K.

Then we have for all x, y ∈ Ω that

|f(x)− f(y)| ≤ K|x− y| ,

that is, f is Lipschitz continuous in Ω with Lipschitz constant K.

Proof. Exercise.
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3 The Inverse Function Theorem and the
Implicit Function Theorem

The Inverse Function Theorem and the Implicit Function Theorem are two of the most
important theorems in Analysis. The Inverse Function Theorem tells us when we can
locally invert a function; the Implicit Function Theorem tells us when a function is given
implicitly as a function of other variables. We will discuss both theorems in Rn here,
but they are also valid in basically the same form in infinite-dimensional spaces (more
precisely, in Banach spaces). The range of their applications is vast and we can only get
a small glimpse of their significance in this course.

The flavour of both results is similar: we linearise the problem at a point by taking
the derivative df . Now, subject to a suitable nondegeneracy condition on df , we obtain a
result that works on a neighbourhood of the point. In this way we go from an infinitesimal
statement to a local (but not a global) result.

The theorems are equivalent; the classical approach, however, is to prove first the
Inverse Function Theorem via the Contraction Mapping Fixed Point Principle and then
deduce the Implicit Function Theorem from it. The proof of the Inverse Function The-
orem is however lengthy and technical and we do not have the time to go through it
in this lecture course. We recommend the books by Spivak (Calculus on Manifolds,
W.A. Benjamin) [?] and Krantz and Parks (The Implicit Function Theorem, History,
Theory and Applications, Birkhäuser), where you can also find an elementary (but still
not short) proof of the Implicit Function Theorem which does not use the Inverse Func-
tion Theorem. The latter then follows directly as a corollary from the Implicit Function
Theorem.

In these lecture notes we first prove the Implicit Function Theorem in the simplest
setting, which is the case of two variables. We then state carefully the Implicit Function
Theorem and the Inverse Function Theorem in higher dimensions, deduce the Implicit
Function Theorem from the Inverse Function Theorem, and give some examples of ap-
plications.

3.1 The Implicit Function Theorem in R2

We start with a simple example. Consider S1 = {(x, y) ∈ R2 |x2 +y2 = 1}, which is just
the unit circle in the plane. Can we find a function y = y(x) such that x2 + y(x)2 = 1?
Obviously, in this example, we cannot find one function to describe the whole unit circle
in this way. However, we can do it locally, that is in a neighbourhood of a point (x0, y0) ∈
S1, as long as y0 6= 0. In this example we can find y explicitly: it is y(x) =

√
1− x2 if

17



y0 > 0 and y(x) = −
√

1− x2 if y0 < 0 both for |x| < 1. Notice also, that if y0 = 0, we
cannot find such a function y, but we can instead write x as a function of y.

The Implicit Function Theorem describes conditions under which certain variables can
be written as functions of the others. In R2 it can be stated as follows.

Theorem 3.1.1. (Implicit Function Theorem in R2) Let Ω ⊆ R2 be open and F ∈
C1(Ω). Let (x0, y0) ∈ Ω and assume that

f(x0, y0) = 0 and
∂f

∂y
(x0, y0) 6= 0 .

Then there exist open intervals I, J ⊆ R with x0 ∈ I, y0 ∈ J and a unique function
g : I → J such that y0 = g(x0) and

f(x, y) = 0 if and only if y = g(x) for all (x, y) ∈ I × J.

Furthermore, g ∈ C1(I) with

g′(x0) = −
∂f
∂x (x0, y0)
∂f
∂y (x0, y0)

. (3.1)

Remark 3.1.2. Obviously, an analogous result is true if ∂f
∂x (x0, y0) 6= 0.

Proof. (Not examinable) Without loss of generality we can assume that ∂f
∂y (x0, y0) > 0.

Due to the continuity of ∂f
∂y we can also assume – by making Ω smaller if necessary –

that
∂f

∂y
(x, y) ≥ δ > 0 for all (x, y) ∈ Ω . (3.2)

As a consequence we can find y1 < y0 < y2 such that f(x0, y1) < 0 < f(x0, y2) and due
to the continuity of f we can find an open interval I containing x0 such that

f(x, y1) < 0 < f(x, y2) for all x ∈ I . (3.3)

The Intermediate Value Theorem and (??) imply that for each x ∈ I there exists a
unique y ∈ (y1, y2) =: J such that f(x, y) = 0. Denote this y by g(x). The continuity of
f and the uniqueness of y also imply that g is continuous.

To complete the proof of the theorem, we need to show that g is continuously differ-
entiable in I and that (??) holds. With the notation y = g(x) we find

f(x+ s, y + t)− f(x, y) = s
∂f

∂x
(x, y) + t

∂f

∂y
(x, y) + ε(s, t)

√
s2 + t2 , (3.4)

with ε(s, t)→ 0 as (s, t)→ 0. We now choose t = g(x+ s)− g(x) such that the left hand
side in (??) vanishes and obtain

t
∂f

∂y
(x, y) = −s∂f

∂x
(x, y)− ε(s, t)

√
s2 + t2 . (3.5)
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We rearrange to obtain∣∣∣ t
s

+
∂f

∂x
(x, y)/

∂f

∂y
(x, y)

∣∣∣ ≤ |ε|
|∂f∂y (x, y)|

(
1 +
|t|
|s|

)
.

Thus, if we can show that |t||s| ≤ C as s→ 0, then we can let s→ 0 in the above inequality

to find that indeed g′(x) exists for all x ∈ I. For (x, y) = (x0, y0) we find the formula in
(??) and the properties of f and g also imply that g′ is continuous.

We still need to show that |t||s| ≤ C . We obtain from (??) that

|t|
|s|
≤
∣∣∂f
∂x

(x, y)
∣∣/∣∣∂f

∂y
(x, y)

∣∣+ |ε|∣∣∂f
∂y (x, y)

∣∣(1+
|t|
|s|

)
≤
∣∣∂f
∂x

(x, y)
∣∣/∣∣∂f

∂y
(x, y)

∣∣+ |ε|
δ

(
1+
|t|
|s|

)
.

We can choose now |s| so small such that |ε|δ ≤
1
2 and then

|t|
|s|
≤ 2
∣∣∂f
∂x

(x, y)
∣∣/∣∣∂f

∂y
(x, y)

∣∣+ 1.

This finishes the proof of the theorem.

Example 3.1.3. In the example at the beginning of this section we have f(x, y) =
x2 + y2 − 1. The theorem tells us that we this relation defines y as a function of x in
a neighbourhood of a point where ∂f

∂y is nonzero, that is, in a neighbourhood of points
other than (±1, 0).

Example 3.1.4. We show that for sufficiently small a > 0 there exists a function
g ∈ C1(−a, a) with g(0) = 0 such that

g2(x)x+ 2x2eg(x) = g(x) .

Indeed, define f : R2 → R via f(x, y) = y2x+2x2ey−y. Then f(0, 0) = 0 and ∂yf(0, 0) =
−1. Hence the Implicit Function Theorem implies the existence of the function g as
claimed. Furthermore we can compute g′(0) = −∂xf(0, 0)/∂yf(0, 0) = 0. Of course, we
cannot hope for an explicit expression for g, but the Implicit Function Theorem tells us
quite easily that such a g exists.

3.2 The Implicit Function Theorem in Rn

To formulate the Implicit Function Theorem in Rn we first introduce some convenient
notation. We write

• Rn = Rk × Rm 3 (x1, . . . , xk, y1, . . . ym) =: (x, y)

• f : Ω ⊆ Rn → Rm, (x0, y0) ∈ Ω ⊆ Rn, f(x0, y0) =: z0
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We are looking for open neighbourhoods U of x0 and V of y0 as well as a function
g : U → V such that

∀(x, y) ∈ U × V : f(x, y) = z0 = f(x0, y0)⇔ y = g(x)

It is instructive to consider first the linear case. Let f(x, y) = Ax + By with A ∈
Mm×k(R) and B ∈ Mm×m(R). If B is invertible then the equation f(x, y) = Ax0 +
By0 =: z0 can be solved for y via

y = B−1
(
z0 −Ax

)
.

Notice that B is just the m ×m submatrix of Df consisting of the partial derivatives
with respect to the y-variables.

Now consider the nonlinear case. Let f ∈ C1(Ω) and write

Df(x, y)) = (Dxf(x, y), Dyf(x, y)) ,

where

Dxf(x, y) =

(
∂fj
∂xi

)
∈Mm×k(R) (j = 1, . . . ,m; i = 1, . . . , k)

and

Dyf(x, y) =

(
∂fj
∂yi

)
∈Mm×m(R) (j = 1, . . . ,m; i = 1, . . . ,m) .

Then

f(x, y) = f(x0, y0) +Dxf(x0, y0)(x− x0) +Dyf(x0, y0)(y − y0) + o(|(x, y)− (x0, y0)|).

If the remainder term were zero, then we would have f(x, y) = f(x0, y0) = z0 iff

Dxf(x0, y0)(x− x0) = −Dyf(x0, y0)(y − y0) .

which, if Dyf(x0, y0) is invertible, is equivalent to

y = y0 −
(
Dyf(x0, y0)

)−1
Dxf(x0, y0)(x− x0).

Hence there exists a function g(x) auch that F (x, y) = z0 iff y = g(x), as desired.
In the nonlinear case, of course the remainder term is nonzero. The Implicit Function

Theorem is the statement that we can still conclude the existence of such a function g,
subject to the nondegeneracy condition that Dyf is invertible.

Theorem 3.2.1. (The Implicit Function Theorem) Let f : Ω ⊆ Rk+m → Rm, where
n = k + m, f ∈ C1(Ω,Rm) and let (x0, y0) ∈ Ω with z0 = f(x0, y0). If Dyf(x0, y0)
is invertible then there exist open neighbourhoods U of x0 and V of y0, and a function
g ∈ C1(U, V ) such that

{(x, y) ∈ U × V | f(x, y) = z0} = {(x, y) | x ∈ U, y = g(x)}.

Furthermore

Dg(x0) = −
(
Dyf(x0, y0)

)−1
Dxf(x0, y0) .
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So y ∈ V ⊂ Rm is defined implicitly as a function of x ∈ U ⊂ Rk via the relation
f(x, y) = 0.

Example 3.2.2.

a) (Nonlinear system of equations)

Consider the system of equations

f(x, y1, y2) =

(
x3 + y3

1 + y3
2 − 7

xy1 + y1y2 + y2x+ 2

)
=

(
0
0

)
.

The function f is zero at the point (2,−1, 0) and

Df(x, y1, y2) =

(
3x2 3y2

1 3y2
2

y1 + y2 x+ y2 x+ y1

)
,

hence

Dyf(2,−1, 0) =

(
3 0
2 1

)
with detDyf(2,−1, 0) = 3 6= 0.

The Implicit Function Theorem implies that there exist open neighbourhoods I of
2 and V ⊆ R2 of (−1, 0) and a continuously differentiable function g : I → V , with
g(2) = (−1, 0), such that

f(x, y1, y2) = 0 ⇔ y = (y1, y2) = g(x) = (g1(x), g2(x))

for all x ∈ I, y ∈ V . Furthermore, the derivative of g at x0 = 2 is given by

Dg(2) = −
(

3 0
2 1

)−1(
12
−1

)
= −1

3

(
1 0
−2 3

)(
12
−1

)
=

(
−4
9

)
.

b) The function f : R4 → R2 is given by

f(x, y, u, v) =

(
x2 + uy + ev

2x+ u2 − uv

)
.

Consider the point (2, 5,−1, 0) such that f(2, 5,−1, 0) = (0, 5)T . The Jacobian
matrix of f is

Df(x, y, u, v) =

(
2x u y ev

2 0 2u− v −u

)
.

Hence

D(u,v)f(x, y, u, v) =

(
y ev

2u− v −u

)
and D(u,v)f(2, 5,−1, 0) =

(
5 1
−2 1

)
.

Since detDf(2, 5,−1, 0) = 7 6= 0, the Implicit Function Theorem implies that
there exist open neighbourhoods U ⊂ R2 of (2, 5) and V ⊂ R2 of (−1, 0) and a
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function g ∈ C1(U, V ) with g(2, 5) = (−1, 0) and f(x, y, g(x, y)) = (0, 5)T for all
(x, y) ∈ U . We can also compute that

Dg(2, 5) = −
(

5 1
−2 1

)−1(
4 −1
2 0

)
= −1

7

(
2 −1
18 −2

)
.

c) (Writing a surface locally as a graph)

Let h : R3 → R with h(x, y, z) = xy − z log y + exz − 1. Can we represent the
‘surface’ given by h(x, y, z) = 0 locally in a neighbourhood of (0, 1, 1) either in
the form x = f(y, z), y = g(x, z) or z = p(x, y)? The Jacobian matrix of h is
Dh(x, y, z) = (y + zexz, x − z

y ,− log y + xexz) and thus Dh(0, 1, 1) = (2,−1, 0).
Hence, the Implicit Function Theorem tells us that we can represent the surface
locally as x = f(y, z) or y = g(x, z), but it does not tell us whether we can do it
in the form z = p(x, y). In fact, one can show that the latter is not possible.

3.3 The Inverse Function Theorem

In this section we consider the following problem. Given a function f : Ω ⊆ Rn → Rn,
does there exist locally around a point x0 an inverse function g = f−1?

The idea is, as usual, to linearise around a point. Let x0 ∈ Rn, y0 = f(x0) and assume
that the Jacobian matrix Df(x0) is invertible. Then we find for general x that

f(x) = y0 +Df(x0)(x− x0) + o(|x− x0|) .

Now, if the remainder term were not present, then we could just invert the function by

y = f(x) if x = x0 +Df(x0)−1(y − y0)

Of course, this will only be true if f is itself linear! The content of the Inverse Function
Theorem is that for general differentiable f there will still be a local inverse, that is, an
inverse defined on a neighbourhood of x0, provided the Jacobian Df(x0) is invertible.

Example 3.3.1. Let f : R→ R be given by f(x) = x2.

• For x0 > 0 or x0 < 0 we have that f is invertible in a neighbourhood of x0

• For x0 = 0 there is no neighbourhood of x0 where f has an inverse. Indeed,
f ′(0) = 0 is not invertible

We first make a definition that is relevant for our discussion of the local behaviour
of f .

Definition 3.3.2. (Diffeomorphism) Let f : U ⊆ Rn → V ⊆ Rn and suppose that U
and V are open in Rn. We say that f is a diffeomorphism if f is bijective, that is there
exists f−1 : V → U , and if f ∈ C1(U, V ) and f−1 ∈ C1(V,U).
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Example 3.3.3. Here is a simple example for a function f : (−1, 1)→ (−1, 1) which is
bijective, f ∈ C1, but f−1 is not differentiable on (−1, 1).

Let f : (−1, 1)→ (−1, 1) be given by f(x) = x3. Obviously f is bijective with inverse

f−1 : (−1, 1)→ (−1, 1) given by f−1(y) = y
1
3 . Furthermore, f ∈ C∞(−1, 1), but f−1 is

not differentiable in any neighbourhood of 0. Hence, f is not a diffeomorphism.

We sometimes informally think of a diffeomorphism as a ‘smooth change of coordi-
nates’.

We can now state our theorem.

Theorem 3.3.4. (The Inverse Function Theorem in Rn) Let Ω ⊆ Rn be open, let
f ∈ C1(Ω,Rn) and let x0 ∈ Ω. If Df(x0) is invertible, then there exists an open
neighbourhood U of x0 such that f(U) is open and f : U → f(U) is a diffeomorphism.
Furthermore

Df−1(f(x0)) =
(
Df(x0)

)−1
.

Remark 3.3.5. Notice that it follows that f−1 ∈ C1 in a neighbourhood of f(x0), we
do not need to assume it.

This is an example of our philosophy that the linearisation of a function at a point
will give us local qualitative information about the function’s behaviour on a neighbour-
hood of the point, provided we have suitable nondegeneracy conditions (in this case the
assumption that the derivative is invertible at the point). It is important to realise, how-
ever, that we do not necessarily get a global result. Even if the derivative is everywhere
invertible the function need not be a global diffeomorphism from Ω to f(Ω), or even a
global bijection. We shall see examples of this in (c) and (d) below.

Example 3.3.6.

a) f : R→ R, f(x) = x2. If x0 > 0 we can choose U = (0,∞), if x0 < 0 we can choose
U = (−∞, 0).

b) Let f : R+ × R→ R2, be given by

(r, ϕ) 7→ (r cosϕ, r sinϕ)

Df(r, ϕ) =

(
cosϕ −r sinϕ
sinϕ r cosϕ

)
such that detDf(r, ϕ) = r > 0.

We have already seen that

(Df(r, ϕ))−1 =
1

r

(
r cosϕ r sinϕ
− sinϕ cosϕ

)
.

Hence f is locally invertible everywhere, but not globally (in fact f is 2π-periodic
in the ϕ variable). The local inverse can be computed: Let f(r, ϕ) =: (x, y) ∈ R2

and let

U =
{

(r, ϕ) | ϕ ∈
(
−π

2
,
π

2

)}
and V = {(x, y) ∈ R2 | x > 0}.
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f : U → V is a diffeomorphism, where g = f−1 : V → U is given by

g(x, y) =
(√

x2 + y2, arctan
y

x

)
.

c) The following important example is one we encountered in Example ??. The
exponential function exp: C→ C given by z 7→ ez is, in real cordinates, the map

(x, y) 7→ (ex cos y, ex sin y)

The Jacobian is

Df(x, y) =

(
ex cos y −ex sin y
ex sin y ex cos y

)
and detDf(x, y) = e2x(cos2 y + sin2 y) = e2x which never vanishes. Hence Df is
always invertible, and the Inverse Function Theorem tells us that the exponential
map is a local diffeomorphism. However it is not a global diffeomorphism as it is
not bijective. The map is periodic in y with period 2π–equivalently exp(z+2πi) =
exp(z). (For those of you who have seen the concept in topology, the exponential
map is a covering map from C onto C− {0}).

d) Let f : (0,∞) × R → R2 be given by f(x, y) = (coshx cos y, sinhx sin y) =: (u, v).
Then

Df(x, y) =

(
sinhx cos y − coshx sin y
coshx sin y sinhx cos y

)
.

Hence detDf(x, y) = sinh2 x+sin2 y and thus detDf(x, y) > 0 for all x > 0, y ∈ R.
As a consequence of the Inverse Function Theorem we have that f is locally a
diffeomorphism for all (x, y). (The function f is not a global diffeomorphism as it
is periodic in y.)

Notice that for fixed x > 0 the image f(x, y) describes an ellipse with axes of length
coshx > 1 and sinhx respectively. Hence f((0,∞)× R) = R2 \ {(u, 0) | |u| ≤ 1}.

We conclude by deducing the Implicit Function Theorem from the Inverse Function
Theorem.

Recall the setup of the latter theorem. We have a C1 map f : Rk+m → Rm. We
write a point of Rk+m as (x, y) with x ∈ Rk and y ∈ Rm, and we assume the m ×m
submatrix Dyf of Df at (x0, y0) is invertible. We want to locally find a function g such
that f(x, y) = 0 iff y = g(x).

In order to apply the Inverse Function Theorem we will expand f to a function Rk+m →
Rk+m: explicitly, we let

F (x, y) = (x, f(x, y)).

Now

DF =

(
I 0

Dxf Dyf

)
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so as we are assuming invertibility of Dyf , we have that DF is invertible at (x0, y0). The
Inverse Function Theorem now tells us F has a local differentiable inverse h : (x, y) 7→
(h1(x, y), h2(x, y)). We have

(x, y) = F ◦ h(x, y) = (h1(x, y), f ◦ h(x, y))

so h1(x, y) = x, and hence h(x, y) = (x, h2(x, y)) with f(x, h2(x, y)) = f ◦ h(x, y) = y.
In particular, f(x, h2(x, 0)) = 0, and we can take g(x) = h2(x, 0).

In fact, this way of approaching the Implicit Function Theorem also yields the following
useful theorem.

Theorem 3.3.7. Let f : Rn → Rm (where m ≤ n) be a C1 function such that f(a) = 0
and rank Df(a) = m. Then there is an open neighbourhood U of a and a differentiable
function h : U → Rn with differentiable inverse such that

f ◦ h(x1, . . . , xn) = (xn−m+1, . . . , xn)

Proof. This is basically contained in the proof of the Implicit Function Theorem above.
After applying a permutation of coordinates (which is a diffeomorphism of Rn) we can
assume that the m×m matrix formed from the m last columns of Df(a) is invertible.
Now the proof we saw above shows the existence of h such that f ◦ h(x, y) = y, as
required.

The significance of this is that if f : Rn → Rm and Df has rank m at a point (ie
is of maximal rank at a), we can locally apply a diffeomorphism which makes f into
the simplest possible rank m map, that is, a projection to Rm. In particular, the local
structure of level sets of f around points of maximum rank is very simple, up to a
diffeomorphism (‘change of coordinates’).
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4 Submanifolds in Rn and constrained
minimisation problems

We are now going to introduce the notion of submanifolds of Rn, which are generalisa-
tions to general dimensions of smooth surfaces in R3.

4.1 Submanifolds in Rn

Let us begin by looking at hypersurfaces in Rn, that is, zero loci of functions f : Rn → R.
These can be very complicated and singular in general, but we expect that for a generic
choice of f we get a smooth set. We can make this precise using the Implicit Function
Theorem as follows.

Let f : Rn → R be a C1-function and M = {x ∈ Rn | f(x) = 0} = f−1{0} its zero
set. If Df(a) 6= 0 for some a ∈ M , then we know from the Implicit Function Theorem,
that we can represent M in a neighbourhood of a as a graph of a function of n − 1
variables (after a suitable reordering of coordinates xn = h(x1, . . . , xn−1) In this way, a
neighbourhood of a is seen to be diffeomorphic to an open set in Rn−1. We could also
see this via the result at the end of the previous section, because this tells us that after
a diffeomorphism we can reduce to the case when the map is a projection.

If this kind of behaviour holds for all points a ∈M , we say M is an n− 1-dimensional
submanifold of Rn. So we know that if Df(x) is nonzero for all x ∈ M , then M is an
n− 1-dimensional submanifold of Rn.

We are now going to generalize this definition to k-dimensional submanifolds of Rn,
for general k.

Definition 4.1.1. (Submanifolds of Rn) Let 0 < k < n be an integer. A set M ⊆ Rn
is called a k-dimensional submanifold of Rn, if for every x0 ∈ M there exists an open
neighbourhood Ω of x0 in Rn and f ∈ C1(Ω,Rn−k), such that

M ∩ Ω = f−1{0} and rankDf(x) = n− k for all x ∈ Ω .

Remark 4.1.2. It suffices to require rankDf(x) = n − k for all x ∈ M ∩ Ω. Indeed,
if rankDf(x) = n − k for an x ∈ M ∩ Ω, this means that the matrix Df(x) has n − k
independent columns, or in other words, that the determinant of the matrix formed by
these n−k independent columns is nonzero. Since Df is continuous and the determinant
is a continuous function, it follows that the determinant of this submatrix is also nonzero
in an open neighbourhood of x.
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The next proposition, which is a consequence of the Implicit Function Theorem, will
tell us that a submanifold can be locally represented as a graph of a differentiable
function.

Proposition 4.1.3. (Submanifolds can be locally represented as graphs) For a set
M ⊆ Rn the following properties are equivalent.

(1) M is a k-dimensional submanifold of Rn (in the sense of definition ??).

(2) For each x ∈M we can, after suitably relabelling the coordinates, write x = (z0, y0)
with z0 ∈ Rk, y0 ∈ Rn−k and find an open neighbourhood U of z0 in Rk, an open
neighbourhood V of y0 in Rn−k, and a map g ∈ C1(U, V ) with g(z0) = y0, such
that

M ∩ (U × V ) = {(z, g(z)) | z ∈ U}.

Remark 4.1.4. In (2) it is important that we remember that the statement is true
only after relabelling the coordinates. For instance, consider again the unit circle S1 ={

(x1, x2) |x2
1 + x2

2 = 1
}

in R2. If x = (1, 0) ∈ S1 we have

S1 ∩
(
(0, 2)× (−1, 1)

)
=
{

(
√

1− z2, z) | |z| < 1
}
.

Hence, to get the statement in (2) we have to relabel (x1, x2) as (x2, x1).

Proof. We first show that (1) implies (2): After possibly relabelling the coordinates we
can write x as x = (z0, y0) such that Dyf(x) is invertible. Then property (2) follows
from the Implicit Function Theorem.

Now assume that (2) is satisfied. Define Ω = U × V and f ∈ C1(Ω,Rn−k) via

f(z, y) = y − g(z)

Then M ∩Ω = f−1{0} and Df(z, y) = (−Dg(z), Idn−k). It follows that rankDf(z, y) =
n− k.

As in the hypersurface case, we see that a suitable neighbourhood of each point in a
k-dimensional submanifold can be identified by a diffeomorphism with an open set in
Rk. We can think of submanifolds as subsets of Rn that locally look like open sets in
Euclidean space Rk.

Remark 4.1.5. In fact it is possible to use these ideas to define abstract k-dimensional
manifolds without reference to an embedding in Rn. Roughly speaking, such a manifold
is a space covered by open sets (‘charts’), each homeomorphic to an open set in Rk, such
that the charts fit together smoothly in a suitable sense. It is in fact possible to transfer
the machinery of differential and integral calculus to such abstract manifolds. These
ideas are explored further in the Part C course on Differentiable Manifolds.

Example 4.1.6.

a) (Curves in R2)

27



i) The unit circle in R2:

∗ A definition as the level set of a function is given by {(x, y) ∈ R2 |
x2 +y2−1 = 0}. Note that this is f−1(0) where f(x, y) = x2 +y2−1, and
that Df(x, y) = (2x, 2y) which has rank 1 at all points of the unit circle
(in fact, at all points except the origin). So the circle is a 1-dimensional
submanifold of R2.

∗ A local representation as a graph of a function is for example y(x) =
±
√

1− x2 ; x ∈ [−1, 1].

∗ A parametrisation is given by γ : [0, 2π)→ R2; γ(t) = (cos t, sin t).

ii)
M = {(x, y) ∈ R2 |x3 − y2 − 1 = 0}

defines a one-dimensional submanifold (a regular curve) in R2. Here, Df(x, y) =
(3x2,−2y) which again has rank 1 on all points of M .

iii) Consider now
M = {(x, y) ∈ R2 | x2 − y2 − 0}

Now M = f−1(0) where f(x, y) = x2−y2, and Df(x, y) = (2x,−2y) has rank
1 except at the origin, which is on the curve. So the curve has the submanifold
property away from the origin, but not at the origin itself. Geometrically, we
can see that the curve is the union of the two lines y = x and y = −x, which
meet at (0, 0). So away from the origin the curve looks like a 1-dimensional
submanifold, but this breaks down at the origin.

b) (Ellipsoids)

An ellipsoid is given by

M =

{
x ∈ R3 | f(x) =

x2
1

a2
+
x2

2

b2
+
x2

3

c2
− 1 = 0

}
.

for some a, b, c > 0. We check that this defines a two-dimensional submanifold of
R3. Indeed,

Df(x) = 2
(x1

a2
,
x2

b2
,
x3

c2

)
and thus Df(x) = 0 if and only if x = 0, but x = 0 /∈M .

f(x) = x2
1 + x2

2 − x2
3 − c

c) (Torus)

Let n = 3 and k = 2. For 0 < r < R a torus is given by

T =
{

(x, y, z) ∈ R3 | f(x, y, z) =
(√

x2 + y2 −R
)2

+ z2 − r2 = 0
}
.

That is, the torus consists of the points in R3 which have distance r to a circle
with radius R. The defining function f is continuously differentiable away from
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the z-axis. However, when r < R the torus does not contain any point on the
z-axis. We calculate

Df(x, y, z) =
(
2
(√

x2 + y2 −R
) x√

x2 + y2
, 2
(√

x2 + y2 −R
) y√

x2 + y2
, 2z
)

and see that Df(x, y, z) 6= 0 when (x, y, z) ∈ T . Consequently, rankDf(x, y, z) = 1
for (x, y, z) ∈ T and we conclude that T is a two-dimensional submanifold of R3.

d) (Orthogonal group)

We claim that
O(n) =

{
X ∈Mn×n(R) | XTX = Id

}
is a submanifold of Rn2

of dimension 1
2n(n− 1).

To see this let
S(n) =

{
X ∈Mn×n(R) | XT = X

}
be the set of symmetric matrices. S(n) is isomorphic to Rr with r = n+ (n− 1) +

(n− 2) + . . .+ 1 = n(n+1)
2 .

Let f : Mn×n(R)→ S(n) be defined via

f(X) = XTX .

Then O(n) = f−1{Id} and we need to identify the range of df(x).

We have for all H ∈Mn×n(R) that

df(X)H = HTX +XTH ∈ S(n).

It remains to show that for all X ∈ O(n) the map df(X) is surjective. Let Z ∈ S(n)
and define H := 1

2XZ. Then

df(X)H =
1

2
ZTXTX +

1

2
XTXZ =

1

2
(ZT + Z) = Z .

Hence the range of df(X) is S(n), thus rank df(X) = dimS(n) = 1
2n(n + 1) and

O(n) is a submanifold of dimension k = n2 − 1
2n(n+ 1) = 1

2n(n− 1).

This is an example of a Lie group, a manifold which is also a group, such that the
group operations of multiplication and inversion are given by differentiable maps.
Many symmetry groups in physical problems turn out to be Lie groups. This
important topic linking geometry and algebra is the subject of the Part C course
Lie Groups. There are also many excellent books on the subject [?, ?, ?].

We now define an important concept for manifolds, the tangent space at a point of
the manifold.

Definition 4.1.7. (Tangent vector, tangent space, normal vector) Let M ⊆ Rn be a
k-dimensional submanifold of Rn.
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1. We call v ∈ Rn a tangent vector to M at x ∈ M , if there exists a C1-function
γ : (−ε, ε)→ Rn, such that γ(t) ∈M for all t ∈ (−ε, ε), γ(0) = x and γ′(0) = v.

2. The set of all tangent vectors to M at x is called the tangent space to M at x, and
we denote it by TxM .

3. We call w ∈ Rn a normal vector to M at x ∈ M if 〈w, v〉 = 0 for all v ∈ TxM .
Thus the set of all normal vectors to M at x is precisely the orthogonal complement
TxM

⊥ of TxM in Rn.

Next we prove the generalisation of the property that ‘the gradient is perpendicular
to the level sets of a function’ (see Corollary ??). This result in particular also shows
that TxM is indeed a k-dimensional vector space and as a consequence that the space
of normal vectors is an (n− k)-dimensional vector space.

Proposition 4.1.8. Let M be a k-dimensional submanifold of Rn. Let Ω be an open
subset of Rn and let f ∈ C1(Ω,Rn−k) be such that M ∩ Ω = f−1{0} and rankDf(x) =
n− k for all x ∈ Ω. Then we have

TxM = kerDf(x),

for all x ∈M ∩ Ω, that is the tangent space equals the kernel of Df(x).

Proof. We first claim that TxM ⊆ kerDf(x):
Indeed, let v ∈ TxM , then there exists γ : (−ε, ε)→M such that

γ(0) = x and γ′(0) = v.

It follows for all t ∈ (−ε, ε), that f(γ(t)) = 0. Hence

0 =
d

dt
f(γ(t)) = Df(γ(t))γ′(t)

and for t = 0 we find 0 = Df(x)v, hence v ∈ kerDf(x).
Now recall that, possibly after a suitable relabelling, we can assume in view of Propo-

sition ?? that x = (z0, y0) ∈ Rk × Rn−k and that there exist open subsets U ⊆ Rk with
z0 ∈ U and V ⊆ Rn−k with y0 ∈ V and a function g ∈ C1(U, V ) with g(z0) = y0 such
that

M ∩ (U × V ) = {(z, g(z)) | z ∈ U}.
We define G : U → Rn by G(z) = (z, g(z)) and for an arbitrary ξ ∈ Rk and sufficiently

small ε we let γ : (−ε, ε)→M be given by

γ(t) = G(z0 + tξ) .

Then γ′(t) = DG(z0 + tξ)ξ and

γ′(0) = DG(z0)ξ with DG(z0) =

(
Idk

Dg(z0)

)
.

Hence imDG(z0) ⊆ TxM and thus we have shown so far that imDG(z0) ⊆ TxM ⊆
kerDf(x). ButDG(z0) is obviously injective, hence dim imDg(z0) = k = n−rankDf(x) =
dim kerDf(x). Hence imDg(z0) = kerDf(x) = TxM .
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Example 4.1.9.

a) Let A ∈ Mn×n(R) be symmetric, detA 6= 0, and let M = {x ∈ Rn | f(x) =
〈x,Ax〉 − 1 = 0}. We have Df(x) = 2(Ax)T and since A is regular and x 6= 0 for
x ∈M we have rankDf(x) = 1 for all x ∈M . Hence M is an (n− 1)-dimensional
submanifold of Rn and Proposition ?? implies that

TxM = {v ∈ Rn | 2 〈v,Ax〉 = 0}

and the 1-dimensional space of normal vectors is spanned by Ax.

In particular, if A = Id, then M is the unit sphere in Rn, the space of normal
vectors at x is spanned by x and the tangent space is given by all vectors which
are perpendicular to x.

b) We have seen that a (two-dimensional) torus (in R3) is given by

T =
{

(x, y, z) ∈ R3 | f(x, y, z) =
(√

x2 + y2 −R
)2

+ z2 − r2 = 0
}
,

where 0 < r < R. Hence, the space of normal vectors is

(T(x,y,z)M)⊥ =
{
w ∈ R3 |w = λ∇f(x, y, z) for some λ ∈ R

}
.

c) Consider the orthogonal group

O(n) =
{
X ∈Mn×n(R) | f(X) = XTX − Id = 0

}
.

We have seen that O(n) is a submanifold of Rn2
of dimension 1

2n(n − 1) and we
also have Id ∈ O(n). With df(X)H = XTH + HTX and df(Id)H = HT + H it
follows

TIdM = {H ∈Mn×n(R) | HT +H = 0},

that is the tangent space at Id is the skew-symmetric matrices.

In fact, the tangent space to a general Lie group at the identity element carries a
very rich algebraic structure, beyond the basic vector space structure it has as a
tangent space. This structure is that of a Lie algebra, a vector space V which also
carries a skew-symmetric bilinear map V × V → V satisfying a certain identity
called the Jacobi identity. Writing the bilinear form, as traditional, using bracket
notation [X,Y ], the Jacobi identity is

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

For matrix Lie groups such as O(n), the bracket is actually given by [X,Y ] =
XY − Y X (check that this does indeed satisfy the Lie algebra axioms!). For
further material on Lie algebras, we refer the reader to the books [?, ?] and also
the Part C course Lie Algebras.
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4.2 Extremal problems with constraints

We now consider an application of these ideas to the study of constrained extremisation
problems. We know from elementary vector calculus that the critical points of a func-
tion on Rn are the points where the gradient vanishes. We now want to consider the
more subtle problem of extremising a function subject to a constraint–that is, finding
the extrema of a function on some subset of Euclidean space defined by one or more
equations.

Let us first consider the simplest case, where we have two functions f, g ∈ C1(R2),
and our goal is to minimise (or maximise) g under the constraint that f(x, y) = 0.

We can often (under some assumptions on f) think of the set

Γ = {(x, y) ∈ R2 | f(x, y) = 0}

as a curve in R2. Let (x0, y0) be such that for some ε > 0 and all (x, y) ∈ Γ∩Bε(x0, y0):

g(x0, y0) ≤ g(x, y).

Suppose that ∇f(x0, y0) 6= 0, and assume without loss of generality that ∂yf(x0, y0) 6=
0. The Implicit Function Theorem guarantees that we can represent Γ in an open
neighbourhood of (x0, y0) as (x, ϕ(x)) for x ∈ I, where I is an open interval with x0 ∈
I, ϕ ∈ C1(I) and ϕ(x0) = y0. The tangent to Γ at (x, ϕ(x)) is given by the vector
(1, ϕ′(x)) and since the gradient is perpendicular to the level sets we have(

1

ϕ′(x0)

)
⊥ ∇f(x, ϕ(x)).

Define G(x) = g(x, ϕ(x)) and consider the point (x0, y0) where g has a local minimiser
on Γ. Then, by Fermat’s Theorem and the Chain Rule,

0 = G′(x0) = ∂xg(x0, y0) + ∂yg(x0, y0)ϕ′(x0) =

〈
∇g(x0, y0),

(
1

ϕ′(x0)

)〉
.

Hence there exists λ ∈ R, such that

∇g(x0, y0) = λ∇f(x0, y0).

We can interpret this geometrically as follows. If the extremisation problem were
unconstrained, the criterion would just be vanishing of ∇g. As we are just looking for
extrema on the constraint curve f = 0, we actually want the component of ∇g tangent
to the curve to vanish, ie ∇g should be normal to the curve f = 0. This is exactly the
condition that ∇g is proportional to ∇f (cf Proposition ?? ).

In the following, we want to generalize this procedure by extremising a function g on
a submanifold M of Rn given by a system of equations f = 0. The following theorem
will provide a necessary condition for an extremal point.
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Theorem 4.2.1. (Theorem on Lagrange multipliers) Let Ω ⊆ Rn be open, g ∈ C1(Ω)
and f ∈ C1(Ω,Rn−k). If x0 ∈ f−1{0} is a local extremum of g on f−1{0}, that is there
exists an open neighbourhood V of x0 such that for all x ∈ V which satisfy f(x) = 0 we
have

g(x) ≥ g(x0) (or g(x) ≤ g(x0)),

and if rankDf(x0) = n− k, then there exist λ1, . . . , λn−k ∈ R, such that

∇g(x0) =
n−k∑
i=1

λi∇fi(x0).

The numbers λ1, . . . , λn−k are called Lagrange multipliers.

Proof. If V is sufficiently small then we have for all x ∈ V that rankDf(x) = n − k,
hence M = f−1{0} ∩ V is a k-dimensional submanifold of Rn. For a v ∈ Tx0M let
γ : (−ε, ε)→M be a C1-function such that γ(0) = x0 and γ′(0) = v. The function g ◦ γ
has in t = 0 a local minimum. Thus

0 =
d

dt
g(γ(t))|t=0 =

〈
∇g(γ(t)), γ′(t)

〉
|t=0 = 〈∇g(x0), v〉

and thus ∇g(x0) ∈ (Tx0M)⊥. Furthermore we have for all x ∈ M and i = 1, . . . , n − k
that

fi(x) = 0, and thus in particular ∇fi(x0) ⊥ Tx0M.

Since rankDf(x0) = n−k the vectors ∇fi(x0) are linearly independent and form a basis
of (Tx0M)⊥. Hence there exist λ1, . . . , λn−k such that ∇g(x0) =

∑n−k
i=1 λi∇fi(x0).

Again, we can interpret this as saying that ∇g is normal to the submanifold f = 0,
and the normal space is spanned by ∇fi : (i = 1, . . . , n− k).

Example 4.2.2.

a) We want to determine the minimal and maximal value of g(x, y, z) = 5x+ y − 3z
on the intersection of the plane E = {(x, y, z) ∈ R3 |x+ y + z = 0} with the unit
sphere S2 = {(x, y, z) ∈ R3 |x2 + y2 + z2 − 1 = 0}.
In other words we want to determine the extremal values of g on

M =
{

(x, y, z) ∈ R3 | f(x, y, z) =

(
x+ y + z

x2 + y2 + z2 − 1

)
= 0
}
.

We compute

Df(x, y, z) =

(
1 1 1

2x 2y 2z

)
and conclude that rankDf(x, y, z) = 2 for all (x, y, z) ∈ M (as (1, 1, 1) /∈ M).
Hence M is a one-dimensional submanifold of R3. Furthermore M is compact, g
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is continuous and hence g attains its infimum and supremum on M . Theorem ??
implies that there exist λ1, λ2 ∈ R such that in an extremal point (x, y, z) we have
∇g(x, y, z) = λ1∇f1(x, y, z) + λ2∇f2(x, y, z). Thus, we find for an extremal point
(x, y, z) that  5

1
−3

 = λ1

 1
1
1

+ λ2

 2x
2y
2z


and f(x, y, z) = 0. This implies that

λ1 = 5− 2λ2x = 1− 2λ2y = −3− 2λ2z (4.1)

and thus (since λ2 = 0 is excluded)

x = y + 2/λ2 and z = y − 2/λ2 .

Next we conclude from f1(x, y, z) = 0 that y = 0 and hence x = 2/λ2 and z =
−2/λ2. Then it follows from f2(x, y, z) = 0 that λ2 = ±2

√
2. Thus g attains its

maximum, which is 4
√

2, at (2−1/2, 0,−2−1/2) and its minimum, which is −4
√

2,
at (−2−1/2, 0, 2−1/2).

b) (Inequality between geometric and arithmetic mean)

Let g : Rn → R be given by g(x) = Πn
i=1xi. Consider the set

M =

{
x ∈ Rn | f(x) =

( n∑
i=1

xi
)
− 1 = 0, xi > 0

}
,

which obviously defines an (n − 1)-dimensional submanifold of Rn. Since M is
compact and g is continuous, g attains its supremum at a point z ∈ M . Since
g = 0 on ∂M and positive in the interior we conclude that indeed z ∈M .

Now we may use Lagrange multipliers to find z and hence the maximum value of
g on M . We can then deduce the arithmetic mean/geometric mean inequality(

n∏
i=1

ai

) 1
n

≤ 1

n

n∑
i=1

ai

The details of the proof are an exercise on the second problem sheet.

c) (Eigenvalues of symmetric real matrices)

Let A ∈Mn×n(R) be symmetric and let g : Rn → R be given by

g(x) = 〈x,Ax〉 und M = {x ∈ Rn | f(x) = |x|2 − 1 = 0}.

M is an (n− 1)-dimensional submanifold of Rn since for all x ∈M we have

∇f(x) = 2x 6= 0.
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M is compact, so that g attains its supremum on M in a point x0. By Theorem ??
there exists λ ∈ R, such that ∇g(x0) = λ∇f(x0) that is Ax0 = λx0. This implies
that x0 is an eigenvector of A with eigenvalue λ. Thus, we have shown that every
real symmetric n× n matrix has a real eigenvalue. We also find that

λ 〈x0, x0〉 = 〈x0, Ax0〉 = g(x0) and thus λ = g(x0) .

Since g(x0) is the maximal value of g on M this also implies that λ is the largest
eigenvalue of A.
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